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Highly parallel experimental biology is offering opportunities to
not just accomplish work more easily, but to explore for underlying
governing principles. Recent analysis of the large-scale organiza-
tion of gene expression has revealed its complex and dynamic
nature. However, the underlying dynamics that generate complex
gene expression and cellular organization are not yet understood.
To comprehensively and quantitatively elucidate these underlying
gene expression dynamics, we have analyzed genome-wide gene
expression in many experimental conditions in Escherichia coli,
Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila mela-
nogaster, Mus musculus, and Homo sapiens. Here we demonstrate
that the gene expression dynamics follows the same and surpris-
ingly simple principle from E. coli to human, where gene expression
changes are proportional to their expression levels, and show that
this ‘‘proportional’’ dynamics or ‘‘rich-travel-more’’ mechanism can
regenerate the observed complex and dynamic organization of the
transcriptome. These findings provide a universal principle in the
regulation of gene expression, show how complex and dynamic
organization can emerge from simple underlying dynamics, and
demonstrate the flexibility of transcription across a wide range of
expression levels.

systems biology � DNA microarray � gene expression dynamics �
transcription � transcriptional organization

The past decade has seen a growing number of model organ-
isms with available draft or complete genome sequences

including Escherichia coli, Saccharomyces cerevisiae, Arabidopsis
thaliana, Drosophila melanogaster, Mus musculus, and Homo
sapiens. The availability of these resources and the development
of tools such as DNA arrays that allow for high-throughput
experimental biology have been driving a paradigm shift in the
life sciences, from the molecular ‘‘one-gene-at-a-time’’ level to a
network or systems level (1–5).

Genome-wide experimental biology approaches offer the
opportunity to work more efficiently (6), and also to explore for
universal governing principles underlying the physiology. Several
recent microarray studies have investigated the large-scale or-
ganization of gene expression, revealing complex networks that
capitulate physiological processes such as the cell cycle, re-
sponses to environmental change, circadian rhythms, and devel-
opmental and tissue-specific gene regulation (6–10). However,
universal features of gene expression dynamics that produce such
complex and dynamic cellular organizations have largely gone
unexplored. To comprehensively and quantitatively elucidate
these underlying gene expression dynamics, we analyzed ge-
nome-wide gene expression data collected from experimental
studies in E. coli, S. cerevisiae, A. thaliana, D. melanogaster, M.
musculus, and H. sapiens samples by using high-density oligo-

nucleotide arrays. Here we show that the gene expression
dynamics follows the same and surprisingly simple principle from
E. coli to H. sapiens, where gene expression changes are pro-
portional to their initial expression levels. Furthermore, we show
that this ‘‘proportional dynamics’’ or ‘‘rich-travel-more’’ mech-
anism can regenerate the observed complex and dynamic orga-
nization of the transcriptome.

Materials and Methods
E. coli. Cells of E. coli strain YMC21 lacking glutamine synthetase
gene was collected under normal or symbiotic conditions as
described (11). Total RNA was isolated by using MasterPure
RNA purification kit (Epicentre Technologies, Madison, WI).

S. cerevisiae. Cells of S. cerevisiae strain FY1679 were grown in
yeast extract�peptone�dextrose medium with aeration at 20 �
0.5°C to maintain an optical density of 0.5 at 600 nm (OD600) by
using a continuous culturing system. The culture was adapted to
12-h light�12-h dark cycles (LD) for 2 days before samples were
obtained under LD conditions every 4 h starting at Zeitgeber
time (ZT) 0 over 2 days. Total RNA was isolated from 10-ml
cultures by using the hot phenol method.

A. thaliana. Wild-type Arabidopsis seeds of the Col-1 ecotype
were sown on Murashige and Skoog (MS) agar plates containing
3% sucrose. Seeds were stratified at 4°C for 2 days and then
placed in growth chambers held at 22°C. Plants were grown in
LD cycles for 7 days and then released into constant light (60
�Einsteins�m�2�s�1). Starting at subjective dawn on day 9 [cir-
cadian time (CT) 0], plants were harvested every 4 h over 2 days.
Total RNA was prepared from the staged tissue samples by using
the Qiagen RNeasy Plant Mini kit (Valencia, CA).

D. melanogaster. white1118 f lies were reared to LD and collected
under LD or constant darkness conditions every 4 h starting at
ZT1 or CT1 over 2 days. Total RNA was prepared from 100
heads of 1-week-old adult males and females by using the Fast
RNA kit (BIO 101, Carlsbad, CA).

M. musculus Time Course Sampling. BALB�c mice (male), pur-
chased 5 weeks postpartum, were adapted to LD cycles for 2
weeks before samples were obtained under LD or constant
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darkness conditions every 4 h starting at ZT0 or CT0 over 2 days.
Slices (0.5 mm thick) of mouse brain were generated by using
Mouse Brain Matrix (Neuroscience) under LD or constant
darkness condition, and then the suprachiasmatic nuclei (SCNs)
were punched out bilaterally from the frozen slices under a
stereomicroscope with a microdissecting needle (gauge, 0.5
mm). Livers were dissected and frozen in liquid nitrogen. Total
RNA was prepared from 50 pooled pairs of SCNs and four
pooled livers at each time point by using by TRIzol reagent
(GIBCO�BRL).

M. musculus and H. sapiens Tissue Sampling. Forty-seven human
tissue samples and cell lines were obtained from commercial
sources and previously published research collaborations, and 45
mouse tissue samples were derived from dissections. Detailed
sample descriptions can be obtained on the web site (http:��
expression.gnf.org) (6).

Microarray Experiments. We examined genome-wide RNA expres-
sion of E. coli, S. cerevisiae, A. thaliana, D. melanogaster, M.
musculus, and H. sapiens by using Affymetrix high-density
oligonucleotide probe arrays (GeneChip) representing �4,200
E. coli, �6,400 S. cerevisiae, �8,200 A. thaliana, �13,500 D.
melanogaster, �10,000 M. musculus, and �12,000 H. sapiens
genes, respectively (7, 8). We extracted total RNA from the
organisms, prepared biotinylated cRNA, hybridized samples to
GeneChip arrays, and obtained hybridization signals as de-
scribed (6, 8–10).

cDNA synthesis and cRNA labeling reactions were performed
as described in the Affymetrix technical manual (Affymetrix,
Santa Clara, CA). We used Affymetrix high-density oligonucle-
otide arrays: E. coli Genome Array for E. coli, Yeast Genome
S98 Array for S. cerevisiae, Arabidopsis Genome Array for A.
thaliana, Drosophila Genome Array for D. melanogaster, Murine
Genome Array U74A for M. musculus (Murine Genome Array
U74A), and Human Genome Array U95A for H. sapiens. To
facilitate comparisons between samples, the obtained data were
scaled globally such that the average of signal intensity for probe
sets of each GeneChip array is 1�30. We defined this scaled
signal intensity values as an ‘‘expression level’’ of a gene and used
it in all subsequent analyses.

ANOVA. Statistical analysis (one-way ANOVA, P � 0.01) was
performed on gene expression data above from E. coli to human.
Expected false positives derived from the multiple testing are
�1% of the tested genes.

Calculation of the Absolute Expression Change. We calculated the
absolute expression change ��k� � �k2 � k1� for individual genes
from an expression level (k1) to another expression level (k2),
along two different conditions of E. coli, along the different ZT
and�or CT in S. cerevisiae, A. thaliana, heads of D. melanogaster,
liver and SCN of M. musculus, or along 45 M. musculus tissues
and 47 H. sapiens tissues. We calculated the absolute expression
change in all distinct pairs of different conditions.

Results and Discussion
To investigate systems-level features of RNA expression, we
analyzed the distribution of gene expression levels from our data
sets obtained from E. coli to H. sapiens. Fig. 1 shows that the
distribution of gene expression levels exhibits a power-law
distribution in which the probability that a gene has amount of
expression, k, decays as a power law, P(k) � k�r. Furthermore,
this genome-wide transcriptional organization is conserved from
E. coli to H. sapiens with the exponent r of the distribution of
gene expression levels close to 2 (1.69–2.09). This power-law
distribution is not artifactual because the hybridization signal
intensity of each probe on the arrays is linear along the cRNA

concentration (Fig. 5, which is published as supporting infor-
mation on the PNAS web site) and as an analysis of serial analysis
of gene expression (SAGE) data (12–15) revealed a similar
power-law distribution and exponent from S. cerevisiae to H.
sapiens (Fig. 6, which is published as supporting information on
the PNAS web site). These results are also consistent with a
previous report on power-law distribution of gene expression
levels (16, 17). Collectively, these results indicate that network
regulation of genome-wide transcriptional organization is con-
served between prokaryotes and eukaryotes.

To confirm these results and examine whether this quantita-
tive property of transcription extends to temporal and spatial
gene regulation, we analyzed RNA expression from diverse
datasets at different ZT and�or CT or tissues in S. cerevisiae, A.
thaliana, D. melanogaster, M. musculus, and H. sapiens. Fig. 7A,
which is published as supporting information on the PNAS web
site, shows that the distribution of gene expression levels exhibits
a power-law distribution P(k) � k�r with an exponent r close to
2 (Fig. 7 C–J). Importantly, statistical analysis (ANOVA) re-
vealed that 3% of genes in S. cerevisiae, 16% of genes in A.
thaliana, 17% of genes in heads of D. melanogaster, and 8% of
genes in liver and 8% of genes in SCN of M. musculus are
dynamically expressed along different ZT and�or CT (P � 0.01).

Fig. 1. Evolutional conservation of transcriptional organization. The distri-
butions of gene expression levels in E. coli (A), S. cerevisiae (B), A. thaliana (C),
D. melanogaster (D), M. musculus (E), and H. sapiens (F) exhibit a power-law
distribution in which the probability that a gene has an expression level k,
decays as a power law, P(k) � k�r. A straight line in each panel represents the
estimated power-law distribution. The estimated value of exponent r is indi-
cated in the lower left corner of each panel.

3766 � www.pnas.org�cgi�doi�10.1073�pnas.0306244101 Ueda et al.



Mammalian tissue specific gene expression displays an even
more dynamic pattern of expression; statistical analysis
(ANOVA) revealed that 95% and 88% of genes are differentially
expressed in 47 H. sapiens and 45 M. musculus tissues, respec-
tively (P � 0.01). Therefore, we analyzed the RNA expression in
47 tissues of H. sapiens and 45 tissues of M. musculus. Despite
differential expression of the vast majority of genes in these data
sets, Fig. 8A, which is published as supporting information on the
PNAS web site, shows that the distribution of gene expression
levels exhibits a power-law distribution P(k) � k�r with an
exponent r close to 2 (see also Fig. 8 B and C). Therefore, both
temporal and spatial gene expression regulation follows a power
law distribution despite the differential dynamic expression of a
substantial fraction of genes.

To investigate the type of dynamics that generates this evo-
lutionary and spatio-temporally conserved power-law transcrip-

tional organization, we analyzed the systems-level features in
expression changes of individual genes. We calculated the tran-
sition probability T(k2, k1) of expression change by counting the
incidence of expression changes for individual genes from an
expression level (k1) to another expression level (k2), along two
different conditions of E. coli (Fig. 2A), or for variouis conditions
in S. cerevisiae (Fig. 2B), A. thaliana (Fig. 2C), heads of D.
melanogaster (Fig. 2D), liver and SCN of M. musculus (Fig. 2 E
and F), or along 45 M. musculus tissues (Fig. 2G) and 47 H.
sapiens tissues (Fig. 2H). This analysis revealed that the transi-
tion probabilities are not random, but rather are highly depen-
dent on the before-transition expression level (k1). For example,
transition from the higher expression levels spread more widely,
whereas transition from the lower expression levels is confined
to the lower expression levels (Fig. 2 A–H). To exclude the
possibility that the narrower expression changes from lower

Fig. 2. Characteristics in gene expression dynamics. (A–H) Transition probability T(k2, k1), where a gene with a certain expression level k1 changes its expression
level to k2, calculated from expression data in E. coli (A), S. cerevisiae (B), A. thaliana (C), heads of D. melanogaster (D), liver and suprachiasmatic nucleus of M.
musculus (E and F), 45 tissues of M. musculus (G), and 47 tissues of H. sapiens (H). Colors from red to yellow to green represent transition probability of descending
values. Gray indicates the value of zero (the lack of the transition data). (I–P) Proportionality in gene expression dynamics. The absolute expression level change
(��k� � �k2 � k1�) is plotted along the before-transition expression level k1 in E. coli (I), S. cerevisiae (J), A. thaliana (K), heads of D. melanogaster (L), liver and
suprachiasmatic nucleus of M. musculus (M and N), 45 tissues of M. musculus (O), and 47 tissues of H. sapiens (P) expression data. The estimated values for
exponent s from a log–log plot of absolute expression change against the before-transition expression level (i.e., ��k� � k1

s ) are indicated in the lower right corner
of each panel.
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expression levels are caused by limit of detection for genes of low
intensity or ‘‘dead probe sets,’’ we applied the same analyses to
probe sets that pass a statistical criteria (ANOVA, P � 0.01), and
we obtained the similar results (data not shown).

To extract the quantitative characteristics of these gene ex-
pression dynamics, we analyzed relationships between the be-
fore-transition expression level (k1) and the absolute expression
change ��k� � �k2 � k1�. Fig. 2 I–P shows that the absolute
expression change is proportional to the before-transition ex-
pression level from E. coli to H. sapiens. Stated differently,
although the absolute change from higher expression levels is
larger, it is proportional to the initial before transition value. To
confirm this proportionality, we measured an exponent s from
log–log plot of absolute expression change (��k�) against the
before-transition expression level k1 (i.e., ��k� � k1

s) and found it

to be close to 1 (Fig. 2 I–P). We also note that the absolute
expression change becomes asymptotically a small but nonzero
value with lower expression levels (Fig. 9, which is published as
supporting information on the PNAS web site). These results
suggest that the proportional gene expression dynamics underlie
genetic networks from E. coli to H. sapiens.

We then tested whether this proportional gene expression
dynamics can generate the observed power-law transcriptional
organization. We calculated the stationary distribution of gene
expression levels by using transition probability matrices of E.
coli to H. sapiens (Fig. 2 A–H) from arbitrary initial distributions
of gene expression levels. We found that the simulated distri-
bution of gene expression levels exhibits the power-law distri-
bution P(k) � k�r, regardless of the initial distribution, with an
exponent r close to 2 (Fig. 3). These results suggest that gene
expression dynamics are conserved from E. coli to H. sapiens and
that this universal gene expression dynamic can regenerate the
observed power-law organization of gene expression levels.

To explore the relationship between proportional gene ex-
pression dynamics and power-law transcriptional organization,
we modeled these gene expression dynamics. We hypothesized
proportionality in gene expression dynamics; where the standard
deviation of gene expression change, ��dk�	, increases in propor-
tional to the before-transition gene expression level k. We next
hypothesized that the average of gene expression changes �dk	 is
zero, indicating that the expression level of each gene may
increase or decrease and it has no systematic tendency (see
Supporting Text, which is published as supporting information on
the PNAS web site). From these assumptions, we can derive the
stationary distribution of gene expression levels and find that it
exhibits the power-law distribution with an exponent �2, i.e.,
P(k) � k�2 (see Supporting Text and Fig. 10, which is published
as supporting information on the PNAS web site, for details).

To validate this model, we implemented the model with
parameters estimated from S. cerevisiae expression analysis (a 

0.25, b 
 0.0006, s 
 1 for ��dk�	 
 a(k � b)s, see Supporting Text).
Fig. 4A shows the transition probability matrix representing the
model gene expression dynamics (see Supporting Text and Fig.
11, which is published as supporting information on the PNAS
web site). The modeled transition probability matrix highly
resembles the transition probability matrix calculated from S.

Fig. 3. Proportional gene expression dynamics can regenerate the observed
transcriptional organization. Shown are the stationary distributions of gene
expression levels calculated by using transition probability matrices in Fig. 2
A–H from arbitrary initial distribution of gene expression levels. The stationary
distributions of E. coli (A), S. cerevisiae (B), A. thaliana (C), heads of D.
melanogaster (D), liver and suprachiasmatic nucleus of M. musculus (E and F),
45 tissues of M. musculus (G), and 47 tissues of H. sapiens (H) exhibit a
power-law decay in which the probability that a gene has an expression level
k, is P(k) � k�r. The straight line in each panel represents the estimated
power-law distribution. The estimated value of exponent r is indicated in the
lower left corner of each panel.

Fig. 4. Theoretical model of proportional gene expression dynamics. (A)
Transition probability matrix representing the theoretical model of propor-
tional gene expression dynamics. The model transition probability T(k2, k1)
represents the probability of expression change from a certain expression
level k1 to other expression level k2 during unit time interval. Colors from red
to yellow to green represent transition probabilities of descending values. (B)
The stationary distribution of gene expression calculated by using the mod-
eled transition probability matrix from arbitrary initial distribution of gene
expression levels. The stationary distributions of model proportional exhibit a
power-law distribution in which the probability that a gene has an expression
level k, decays as a power law. The straight line represents the estimated
power-law distribution P(k) � k�2.
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cerevisiae expression data (Figs. 4A and 2B). Moreover, we
demonstrated that the stationary distribution generated by the
model transition probability matrix from any initial distributions
exhibits the power-law distribution P(k) � k�r with an exponent
r close to 2 (Figs. 4B and 3B). For comparison, we also
implemented the model with other parameter values such as s 

0.5 or s 
 2 and found much less agreement with observed
distributions, indicating the importance of proportional dynam-
ics in generating observed power-law distributions (Fig. 12,
which is published as supporting information on the PNAS web
site). Based on these results, we concluded that gene expression
dynamics from E. coli to H. sapiens are governed by the same
proportional dynamics, where the expression level of each gene
is dynamically changed in proportion to its initial expression
level, and that this proportionality in gene expression dynamics
has a critical role in generating the power-law organization of
gene expression levels.

Collectively, these results indicate that gene expression dy-
namics follows the same and surprisingly simple principles from
bacteria to humans in which gene expression changes are pro-
portional to their initial expression levels. Importantly, this
proportionality assures the same level of f lexibility of expression
for highly expressed genes as well as for lower expressed genes.
This f lexibility is vital for transcriptional regulation because both
highly expressed genes such as structural genes as well as more
rare mRNAs such as G protein-coupled receptors have to change
their expression levels to adapt an environmental or develop-
mental change.

Power-law distributions arise in the expression levels with
proportional dynamics where highly expressed genes change
their expression levels more dynamically than less expressed
genes. This ‘‘rich-travel-more’’ mechanism generates power-law
distributions in the fixed networks with constant number of
components and resembles the ‘‘rich-get-richer’’ mechanism
(e.g., preferential attachment) that can generate the power-law
distributions in growing networks such as the World Wide Web,
in which highly connected nodes have a higher chance than less
connected nodes to linking to new nodes. Interestingly, we have
analyzed the evolution of metabolic networks with similar
number of constituents, and found that the proportional dynam-

ics also underlies the evolution of metabolic networks with a
fixed or similar number of components (H.R.U., J.B.H., and
M.I., unpublished data).

Recently, several studies have investigated the genome-wide
network structure of the metabolome (18–20), transcriptome
(21–24), and proteome (25), and have revealed the universality
of the scale-free, modular, and hierarchical topology of biolog-
ical networks (26–30). Moreover, several recent microarray
studies (4, 5) have identified the specific dynamics of specialized
systems including the cell cycle, environmental responses, cir-
cadian rhythms, development, and tissue-specific gene regula-
tion. This present study illustrates generic gene expression
dynamics underlying regulation of transcription, complementing
previous work on generic genome-wide network structure or on
specific dynamics of specialized systems. A next challenge is,
thus, the understanding of the systems-level features in the
network structure that generates this proportional dynamic, as
well as the investigation of the generality of proportional dy-
namics in other physiological processes, such as the regulation of
metabolic processes. The development of predictive models that
accurately represent biological processes in conjunction with
highly parallel experimental data should accelerate the under-
standing of additional underlying principles governing the com-
plex and dynamic systems of life.
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